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Reflected Solar Accuracy and Climate Trends
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Climate Sensitivity Uncertainty

is a factor of 4 (IPCC) which =

a factor of 16 uncertainty in climate
change economic impacts

Climate Sensitivity Uncertainty =
Cloud Feedback Uncertainty =
Low Cloud Feedback =
Changes in SW CRF/decade
(v-axis of figure)

Higher Accuracy Observations =
CLARREO reference intercal of
CERES = narrowed uncertainty
15 to 20 years earlier

Wielicki et al. 2013,
Bulletin of the American
Meteorological Society

High accuracy is critical to more rapid understanding of climate change

Labsphere

Wielicki, B.A. et al. 2013. Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, no. 10, 1519-1539
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Reflected Solar Accuracy and Climate Trends
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High accuracy is critical to more rapid understanding of climate change
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Earth Observation Commercial Satellite Companies TERRAWATCH =
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Value-centric design methods were developed for
fractionated spacecraft architectures

INBA SIS

—_ = Value-centric design methodology* has « NRC Recommendation: “NASA
T — g@ been used to quantify life-cycle value of should establish a value-based
fractionated spacecraft architectures decision approach...” [2015]

ST

» “a value-centered framework is
capable of distinquishing among
competing Earth measurements” —
[NRC committee, 2015]

CONTINUITY OF NASA EARTH
OBSERVATIONS FROM SPACE
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Siddiqi, A., Magliarditi, E., and de Weck, O. L., “Valuing New Earth Observation Missions for System Architecture Trade Studies™ I_absphere

IEEE International Geoscience and Remote Sensing Symposium, (2019)
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Source: Zuleta, “Virtual Constellations, ARD and Sensor Fusion: the future of earth observation” JACIE 2020
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NASA GLAMR Primary Calibrator (<0.25% k=2¢ TNEH &

Goddard Laser for Absolute Measurement of Radiance (GLAMR) m
Joel McCorkel!, Brendan McAndrew?, Kurt Thome!, Jim Butler!

1Code 618, 2Code 551 - NASA/GSFC

----- SIACUS ASA
--SpMA. RSRA
; ;

Detector 8

Crosstalk

[-Hh H'.
400 500 GOU 700 800 900 1000
Wavelength [nm]

e

GLAMR is a tunable and high-powered laser system that
provides an ideal light source for characterizing the spectral
and radiometric response of an instrument. This pure signal
is allows decoupling of sensor features (e.g. linearity,
crosstalk, scattered light) and orders of magnitude better
absolute radiometric accuracies.

7,  Earth Sciences Division — Hydrospheric and Biospheric Sciences McCorkel, NASA/GSFC
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27
An on-board calibration assembly(OBCA) on the ENMAP satellite, Wilkens, Sang, Erhard, Bittner, et. Al,,
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International Conference on Space Optics, 2016. I_absphere
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Spiral calibration source development yields more mature

product for future technology insertion
. > L

\ Blackbody Design &

Demonstration

Phase 0

» Demonstrate thermal
uniformity and responsivity

+ Demonstrate active
temperature control

+ Demonstrate high (=0.995)
emittance

Metrics

+ Design for thermal infrared
blackbody emitter

+ Measurements that anchor
thermal model and optical
parameters

Breadboard Design &
Procurement

Phase 1

v Generate supplier statement
of work and specification

¥ Procure VSWIR sources

v Define test setup and
equipment

Metrics

¥ Generate SSOW and Spec
for calibrator procurement

¥ Procure FPA, Dewar, and
Electronics

¥ Finalize test equipment list
and procure

Breadboard
Characterization &
Brassboard Design

Phase 2

v Receive and test
breadboard VSWIR sources

* Design, analyze, and

procure brassboard and
thermal infrared sources

Metrics

* Integrate VSWIR calibrator
with ATLIS-P telescope

* Characterize breadboard
VSWIR calibrator

*» |dentify space qualified
sources

Brassboard MAI&T

Flight Design &
Qualification

Phase 3

« Demonstrate and

characterize the brassboard
design with ATLIS-P
telescope

+ Demonstrate and

characterize mechanical
functionality

Metrics

+ Stable, uniform illumination

of FPAs across FOV

+ Demonstrated compliance

with 2019 RMA

» Exit TRL 5+

+ Finalize Flight design and
qualify thru full
environmental testing
including radiation

Metrics

+ (Calibrator passes
environmental qualification

+ Calibrator successfully
tested on Engineering
Development Unit

V- Raytheon
n Intelligence & Spoce

P

[
Puschell, J., Schiller, S., “Improved Radiometric calibration of Imaging Systems (IRIS) for next generation small satellite imagers” SPIE OLQI%%BQE €
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FLARE

SYSTEM OPERATIONS

Mirror Array Turret

At Craft Signal

User Computer/FLARE Portal
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